Vue.nextTick 源码解析

在使用 vue 的过程中,如果碰到需要将更新的数据渲染到DOM上才进行后续操作的话,会用到$nextTick。用法如下:

在下次 DOM 更新循环结束之后执行延迟回调。在修改数据之后立即使用这个方法,获取更新后的 DOM。

1
2
3
4
5
6
7
8
9
10
11
12
// 修改数据
vm.msg = 'Hello'
// DOM 还没有更新
Vue.nextTick(function () {
// DOM 更新了
})

// 作为一个 Promise 使用 (2.1.0 起新增,详见接下来的提示)
Vue.nextTick()
.then(function () {
// DOM 更新了
})

也就是说,回调函数将会在下次 DOM 更新循环结束后调用
那 DOM 更新循环是什么? 下次更新循环呢?

我们知道 Vue 是异步更新代码的,异步更新是就是每次属性修改会将更新操作先放入一个队列中,当所有的更新操作完成后,会一次性执行队列中所有的更新方法,同时清空队列。如果是同步更新,就会在每次属性变化的时候去渲染DOM,如果修改两个属性,就会渲染两次,这样的性能开销是非常大的。

在深入理解 nextTick 之前,先了解一下JS运行机制
分析 Vue 的 nextTick 源码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

// v2.6.6 src/core/util/next-tick.js
/* @flow */
/* globals MutationObserver */

import { noop } from 'shared/util'
import { handleError } from './error'
import { isIE, isIOS, isNative } from './env'

export let isUsingMicroTask = false

const callbacks = []
let pending = false

function flushCallbacks () {
pending = false
const copies = callbacks.slice(0)
callbacks.length = 0
for (let i = 0; i < copies.length; i++) {
copies[i]()
}
}

// Here we have async deferring wrappers using microtasks.
// In 2.5 we used (macro) tasks (in combination with microtasks).
// However, it has subtle problems when state is changed right before repaint
// (e.g. #6813, out-in transitions).
// Also, using (macro) tasks in event handler would cause some weird behaviors
// that cannot be circumvented (e.g. #7109, #7153, #7546, #7834, #8109).
// So we now use microtasks everywhere, again.
// A major drawback of this tradeoff is that there are some scenarios
// where microtasks have too high a priority and fire in between supposedly
// sequential events (e.g. #4521, #6690, which have workarounds)
// or even between bubbling of the same event (#6566).
let timerFunc

// The nextTick behavior leverages the microtask queue, which can be accessed
// via either native Promise.then or MutationObserver.
// MutationObserver has wider support, however it is seriously bugged in
// UIWebView in iOS >= 9.3.3 when triggered in touch event handlers. It
// completely stops working after triggering a few times... so, if native
// Promise is available, we will use it:
/* istanbul ignore next, $flow-disable-line */
if (typeof Promise !== 'undefined' && isNative(Promise)) {
const p = Promise.resolve()
timerFunc = () => {
p.then(flushCallbacks)
// In problematic UIWebViews, Promise.then doesn't completely break, but
// it can get stuck in a weird state where callbacks are pushed into the
// microtask queue but the queue isn't being flushed, until the browser
// needs to do some other work, e.g. handle a timer. Therefore we can
// "force" the microtask queue to be flushed by adding an empty timer.
if (isIOS) setTimeout(noop)
}
isUsingMicroTask = true
} else if (!isIE && typeof MutationObserver !== 'undefined' && (
isNative(MutationObserver) ||
// PhantomJS and iOS 7.x
MutationObserver.toString() === '[object MutationObserverConstructor]'
)) {
// Use MutationObserver where native Promise is not available,
// e.g. PhantomJS, iOS7, Android 4.4
// (#6466 MutationObserver is unreliable in IE11)
let counter = 1
const observer = new MutationObserver(flushCallbacks)
const textNode = document.createTextNode(String(counter))
observer.observe(textNode, {
characterData: true
})
timerFunc = () => {
counter = (counter + 1) % 2
textNode.data = String(counter)
}
isUsingMicroTask = true
} else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) {
// Fallback to setImmediate.
// Techinically it leverages the (macro) task queue,
// but it is still a better choice than setTimeout.
timerFunc = () => {
setImmediate(flushCallbacks)
}
} else {
// Fallback to setTimeout.
timerFunc = () => {
setTimeout(flushCallbacks, 0)
}
}

export function nextTick (cb?: Function, ctx?: Object) {
let _resolve
callbacks.push(() => {
if (cb) {
try {
cb.call(ctx)
} catch (e) {
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
if (!pending) {
pending = true
timerFunc()
}
// $flow-disable-line
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}

可以看到 nextTick 是用 Promise 实现的,也就是说是放入 microtask 中的,为什么不放入 macrotask 用 setTimeout 呢?

如果放入 macrotask 中,则会在当前脚本执行完后清空一次 microtask,然后执行 render 渲染页面,此时还未执行更新操作,因为更新操作在下一轮事件循环中的 macrotask,所以此时 DOM 并未修改,如果要渲染成功就需要两次事件循环。所以异步更新 DOM 操作要放到 microtask 中。尽可能的用 microtask,如果浏览器不支持,再用 macrotask。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
if (typeof Promise !== 'undefined' && isNative(Promise)) {
const p = Promise.resolve()
timerFunc = () => {
p.then(flushCallbacks)
if (isIOS) setTimeout(noop)
}
isUsingMicroTask = true
} else if (!isIE && typeof MutationObserver !== 'undefined' && (
isNative(MutationObserver) ||

MutationObserver.toString() === '[object MutationObserverConstructor]'
)) {

let counter = 1
const observer = new MutationObserver(flushCallbacks)
const textNode = document.createTextNode(String(counter))
observer.observe(textNode, {
characterData: true
})
timerFunc = () => {
counter = (counter + 1) % 2
textNode.data = String(counter)
}
isUsingMicroTask = true
} else if (typeof setImmediate !== 'undefined' && isNative(setImmediate)) {
timerFunc = () => {
setImmediate(flushCallbacks)
}
} else {
timerFunc = () => {
setTimeout(flushCallbacks, 0)
}
}
  • 当浏览器支持 Promise,使用 Promise 触发回调。
  • 否则,如果支持 MutationObserver,实例化观察者对象。
  • 否则,如果支持 setImmediate,则用 setImmediate。
  • 最后,如果都不支持,使用 setTimeout 0。

不管哪种任务,最终都赋值给 一个异步延迟的函数 timerFunc。

再接着看 nextTick 函数,它接收两个参数,第一个参数是回调函数 cb,第二个参数是当前环境上下文 ctx。将回调函数 cb 添加到 callbacks 数组中,此时回调函数并没有执行,当pending 为 false 时,开始执行。pending 在最开始文件首部定义let pending = false,它是一个标识,也就是锁,表示队列中是否有在等待调用的回调,当没有时,执行 timerFunc。执行时完后将 pending 恢复为 false(打开状态)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
export function nextTick (cb?: Function, ctx?: Object) {
let _resolve
callbacks.push(() => {
if (cb) {
try {
cb.call(ctx)
} catch (e) {
handleError(e, ctx, 'nextTick')
}
} else if (_resolve) {
_resolve(ctx)
}
})
// 检查是否有正在执行的异步任务队列(callback任务数组)
if (!pending) {
// 把锁锁上
pending = true
timerFunc()
}
// $flow-disable-line
// 如果没有提供回调,并且支持Promise,返回一个Promise
if (!cb && typeof Promise !== 'undefined') {
return new Promise(resolve => {
_resolve = resolve
})
}
}

timerFunc 里注册了回调事件 flushCallbacks,当调用栈执行完毕后再去执行里面的 flushCallbacks 事件,flushCallbacks 内部在执行 callbacks 回调时对回调函数队列做了一个备份,因为如果出现 nextTick 回调里又有 nextTick,那从设计角度看,内层nextTick应该放入新的 microtask 中,避免外层的 nextTick 回调函数和内层的 nextTick 回调函数在同一个 microtask 中被执行。

1
2
3
4
5
6
7
8
9
10
11
12
function flushCallbacks () {
pending = false
// 拷贝一份,防止出现cb回调函数执行时又往callback中添加回调
// 比方说nextTick的回调里又有nextTick,内层nextTick应该放入新的microtask中
// 拷贝一份执行完当前的即可
const copies = callbacks.slice(0)
// 拷贝完将callbacks清空
callbacks.length = 0
for (let i = 0; i < copies.length; i++) {
copies[i]()
}
}

所以,精简一下nextTick核心代码如下。(setTimeout 来模拟异步执行回调)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
let callbacks = [];
let pending = false;
function nextTick(cb) {
callbacks.push(cb);
if(!pending) {
pending = true;
setTimeout(flushCallbacks, 0); // 用 setTimeout 模拟异步执行回调
}
}

function flushCallbacks() {
pending = false;
const copies = callbacks.slice(0);
callbacks.length = 0;
for (let i = 0; i < copies.length; i++) {
copies[i]()
}
}